Construction of all general symmetric informationally complete measurements
نویسندگان
چکیده
We construct the set of all general (i.e. not necessarily rank 1) symmetric informationally complete (SIC) positive operator valued measures (POVMs), and thereby show that SIC-POVMs that are not necessarily rank 1 exist in any finite dimension d. In particular, we show that any orthonormal basis of a real vector space of dimension d 2 − 1 corresponds to some general SIC POVM and vice versa. Our constructed set of all general SIC-POVMs contains weak SIC-POVMs for which each POVM element can be made arbitrarily close to a multiple times the identity. On the other hand, it remains open if for all finite dimensions our constructed family contains a rank 1 SIC-POVM.
منابع مشابه
Symmetric Informationally Complete Measurements of Arbitrary Rank
There has been much interest in so-called SIC-POVMs: rank 1 symmetric in-formationally complete positive operator valued measures. In this paper we discuss the larger class of POVMs which are symmetric and informationally complete but not necessarily rank 1. This class of POVMs is of some independent interest. In particular it includes a POVM which is closely related to the discrete Wigner func...
متن کاملSymmetric Informationally Complete Quantum Measurements
We consider the existence in arbitrary finite dimensions d of a POVM comprised of d rank-one operators all of whose operator inner products are equal. Such a set is called a “symmetric, informationally complete” POVM (SIC-POVM) and is equivalent to a set of d equiangular lines in C . SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum me...
متن کاملTight informationally complete quantum measurements
We introduce a class of informationally complete positive-operator-valued measures which are, in analogy with a tight frame, “as close as possible” to orthonormal bases for the space of quantum states. These measures are distinguished by an exceptionally simple state-reconstruction formula which allows “painless” quantum state tomography. Complete sets of mutually unbiased bases and symmetric i...
متن کاملQuantum measurements and finite geometry
A complete set of mutually unbiased bases for a Hilbert space of dimension N is analogous in some respects to a certain finite geometric structure, namely, an affine plane. Another kind of quantum measurement, known as a symmetric informationally complete positive-operator-valued measure, is, remarkably, also analogous to an affine plane, but with the roles of points and lines interchanged. In ...
متن کاملFisher-Symmetric Informationally Complete Measurements for Pure States.
We introduce a new kind of quantum measurement that is defined to be symmetric in the sense of uniform Fisher information across a set of parameters that uniquely represent pure quantum states in the neighborhood of a fiducial pure state. The measurement is locally informationally complete-i.e., it uniquely determines these parameters, as opposed to distinguishing two arbitrary quantum states-a...
متن کامل